
A basic tutorial for Rapid
Jos Koetsier and Jano van Hemert
for version 2.0—May 19, 2011

In this tutorial, we will learn how to build portals for com-

http://research.nesc.ac.uk/rapid/

putational science applications using Rapid. Rapid is designed to
quickly prototype, develop and deploy portlets that become part
of a web portal. Its main purpose is to allow rapid development of
user interfaces for dedicated tasks and applications that need ac-
cess to remote compute resources. It has many features to make it
easy to create these portlets as it can connect to different compute
resources, handle remote file systems and deal with all aspects of
submitting compute jobs.

The tutorial expects students to be comfortable with typing com-
mands on a command line (terminal), downloading archives from
the web and extracting these, and with basic editing of text files.
We begin the tutorial with installation instructions of several soft-
ware components and then start to develop a simple portlet. We
will refine this portlet gradually to incorporate more features pro-
vided by Rapid.

Preparation of the development system

The first task is to set up the development environment. Rapid
depends on the following software packages.

• Java (version 1.5+)

• Ant (version 1.7.1+)

• A JSR-168-compliant portal container, such as Liferay Portal 1 1

To install Liferay simply go into its directory structure and ex-
ecute the startup.sh script found in the bin/ directory of the
Apache Tomcat server. Wait for a few seconds before testing the
installation worked by point any web browser at http://localhost:8080. Task 1: Install where necessary Java

and Ant

Task 2: Download, unpack and install
Liferay

Task 3: Download the rapidportlet
software from http://research.nesc.ac.
uk/rapid/ and unpack it

Configuration files

After unpacking the rapid portlet distribution, a number of directo-
ries and files will be created in the rapidportlet directory. All con-
figuration information will be put into the configuration directory.
The two important files are called rapid.xml and rapid.properties.

We first customise rapid.properties. Important properties in
this configuration file are rapid.portletname and liferay.category;
these determine the name of the portlet and in which category they
will be placed. Task 4: Edit the rapid.properties

file in your text editor of choice
and change the portlet name and
category.

The second file is the main configuration file that we will con-
tinue to edit throughout this tutorial. The file rapid.xml contains

http://research.nesc.ac.uk/rapid/
http://localhost:8080
http://research.nesc.ac.uk/rapid/
http://research.nesc.ac.uk/rapid/


a basic tutorial for rapid 2

rapid.portletname = name

rapid.title = a title

rapid.title.short = shorttitle

rapid.keywords = rapid portlet keyword

liferay.category = rapid

Figure 1: An example of the
rapid.properties file

a definition of the resources, the logic of the task and XHTML
markup that defines the user interface of the portlet. Figure shows
an outline of a simple portlet. It contains one page, some XHTML
and two buttons, one to refresh the page and one that refers to a
non-existing page.

<?xml version="1.0" encoding="UTF-8"?>

<rapid xmlns="http://www.nesc.ac.uk/rapid"

xmlns:x="http://www.w3.org/1999/xhtml">

<page name="pageone">

<x:h1>First Page</x:h1>

<button display="refresh">

<navigate nextpage="pageone"/>

</button>

<button display="next page">

<navigate nextpage="pagetwo"/>

</button>

</page>

...

...

</rapid>

Figure 2: A very simple outline of a
rapid.xml file

Task 5: Add the (now missing) second
page with some XHTML and a
button that refers back to the first
page.Deploying Rapid portlets

The configuration is now ready to be translated into a portlet. By
calling Rapid, we translate the XML into a WAR file that can be
deployed directly in Liferay. Task 6: Call this file rapid.xml and

copy it into the configuration

directory of Rapid.

Task 7: Issue the command ant from
the rapidportlet directory.

Task 8: Copy the resulting WAR file
from the portlet directory into
the deploy directory of the Liferay
Portal.

Task 9: Wait a few seconds, log into
the portal and add the portlet (see
Figure for instructions).

We now add a file browser to the portlet that will enable the
user to select a file from a remote SFTP server. The file browser will
display the full path of the file a user selects.

Rapid uses variables to maintain state. Before a variable can
be used it has to be initialised and given a default value. For this
exercise we require three variables: two variables are needed to
authenticate to the SFTP server, one for the username and one for
the password. A third variable is used to store the full path of the
file the user selected. Task 10: Declare and initialise vari-

ables to contain the Username,
Password and Filename.



a basic tutorial for rapid 3

Figure 3: To add a new portlet to
Liferay first click on "Add application"
then find your named portlet under
your chosen category (default: rapid)

<initialise>

<variable name="usernameVar">

<single>

<value>username</value>

</single>

</variable>

<variable name="passwordVar">

<single>

<value/>

</single>

</variable>

...

...

</initialise>

Figure 4: Initialising variables in
Rapid’s main configuration file



a basic tutorial for rapid 4

Transferring files

Next we define the SFTP server that the user will be able to browse.
The SFTP server requires a unique name that will be used to re-
fer to it throughout the rapid.xml file. Furthermore, we have to
specify its URL, a username and a password. Here, we use the val-
ues of the variables we specified previously for the username and
password. The notation Rapid uses for variable substitution is a
dollar sign ($) followed by the name of the variable in brackets. To
retrieve the value of the username we use $(usernameVar) and for
the password we use $(passwordVar). This notation can be used
throughout all parts of a Rapid XML file.

<ssh name="mysftpserver">

<url>sftp://my.host/path</url>

<username>$(usernameVar)</username>

<password>$(passwordVar)</password>

</ssh>

Figure 5: Definition of a file system
resource reachable via SFTP with a
username and password

Task 11: Add a SFTP file server
definition to the initialisation
section of rapid.xml.

Of course simply defining and displaying the values of variables
is not very interesting. We need to allow the user to manipulate
these variables. Rapid can use different methods to enter a value,
such as radio buttons, drop-down lists and text boxes. In this exer-
cise we will add two text boxes, one for the username and one for
the password.

<page name="...">

...

<variable name="usernameVar">

<text cols="20"/>

</variable>

...

</page>

Figure 6: Interface elements to allow
manipulation of variables in a portlet

Task 12: Add a textbox to allow a user
to enter the username

Task 13: Add a textbox to allow a
user to enter the password. Use
the password="true" attribute to
stop characters appearing on the
screen.

We add a file browser to allow a user to select a file. We also
want to display to a user the path of the file they choose. Adding
a file browser is similar to adding a text box as we did in the pre-
vious section. The file browser is simply another way for the user
to manipulate the value of a variable. The value of the file chosen
by the user can displayed simply by using the $(filenameVar)

notation. Task 14: Add a file browser.

Task 15: Display the full path of the
file chosen by the user.

Task 16: Deploy the new portlet, login
to the sftp server and select a file.

Example portlet: word count

We will create a portlet to submit a very simple computational job:
counting the words in a text file. So far, we enabled a user to select
a file. Here, we will extend the portlet to use the Unix word count



a basic tutorial for rapid 5

<page name="...">

...

<variable name="filenameVar">

<browser filesystem="mysftpserver"/>

</variable>

...

</page>

Figure 7: Adding a file browser to a
Rapid portlet

program (normally installed under /usr/bin/wc) to determine how
many characters, words and lines are in a file selected by a user.

Figure shows the steps of the whole process we enable via the
portlet. The user will be able to browse and select a file from a file
server (Step 1). The file is copied to a another computer (Step 2)
where the computation takes place (Step 3)—here counting charac-
ters, words and lines in a text file. The result will be copied into a
directory that is available externally via HTTP; this allows the port-
let to access it remotely and display it directly in the portal (Step
4).

Figure 8: Browsing a remote file
system, selecting and copying a file,
then executing Unix’ word count
program and displaying the result
directly in the portal

In the initialise section of the portlet we have to add a sim-
ple outline of the job. We have to specify the location of the exe-
cutable and the parameters it uses. The word count program (in
its simplest form) takes one parameter: the location of the file. The
output of the program is written to stdout and can be redirected to
a file using the <stdout> element. The output file will be written to
a directory that is available remotely via a web server; this allows
the portal to fetch and display the results. Task 17: Insert the appropriate com-

pute job definition in the initialisa-
tion of your rapid.xmlThe input files to a job often reside on another file system and

need to be transferred to the computer that will perform the com-
puting step. Here, the computer responsible for executing the word



a basic tutorial for rapid 6

<initialise>

<posix>

<executable>/usr/bin/wc</executable>

<parameter index="0">/tmp/inputfile</parameter>

<stdout>/Users/compute/Sites/outputfile</stdout>

</posix>

</initialise>

Figure 9: Definition of a compute job
in the initialisation section of Rapid’s
main configuration file

count program is the same computer running the portal. Rapid can
transfer files both before—source file transfers—and after— target

file transfers—the execution of a program. All file transfers have to
be initialised in the initialise section as shown in the example in
Figure . In this example, the portlet copies a file selected by a user,
which is represented by the variable $(filenameVar), into the /tmp/

directory of the execution host, where it is named inputfile.

<initialise>

<datastage>

<source>

<filesystem>mysftpserver</filesystem>

<path>$(filenameVar)</path>

</source>

<filename>/tmp/inputfile</filename>

</datastage>

</initialise>

Figure 10: Definition of a file transfer
where a filename is substituted from
another user interface element such as
a file browser. Here we show a stage
in before the computing step where an
input file is transferred from a remote
SFTP server

A synchronisation issue exists in the example shown in Fig-
ure . If two users were to access the portlet at the same time, the
second user’s input file will overwrite the first. We need to make
the input and output filenames unique for every computational job.
A uuid variable exists to make this possible. This variable will be
set to a random new uuid every time a job is initialised in a Rapid
portlet.

<initialise>

...

<variable name="uuidVar">

<uuid/>

</variable>

...

</initialise>

Figure 11: Definition of a uuid vari-
able, which is assigned a random
string every time a portlet is initialised

Using a uuid variable, we can change the <filename> element
of our data transfer to ensure a file with a reasonably unique file-
name is created. The name of our input file will then resemble



a basic tutorial for rapid 7

/tmp/inputfile-fe7f0cb0-f606-4801-85ac-b20867443290. Simi-
larly, we have to ensure the output file, containing the word count
is unique. We need to append also the uuid to the filename of the
output file.

<initialise>

...

<datastage>

...

<filename>/tmp/inputfile-$(uuidVar)</filename>

...

</datastage>

...

</initialise>

Figure 12: New definition of part of
the data stage in that incorporates a
random input string into the input file

Task 18: Add a uuid variable to the
initialisation section of your portlet.

Task 19: Append a uuid to the name
of the input file.

Task 20: Append a uuid variable to
the name of the output file.

Computational resources

The computational resource is where the programme executes. Two
steps are required to setup a resource. First we have to indicate how
to reach the computational resource, which we do by specifying a
file system resource. Then we define a computational resource that
will be accessed through the file system indicated in the first step. If
the computational resource is the same as the portal we access the
computational resources through a local filesystem. Alternatively,
if the computational resource is installed on a remote system we
can access it through SSH, using the sftp filesystem. Next we have
to define a computational resource and connect it to the file system.
An example of such a connection is shown in Figure .

<fork name="compute">

<filesystemname>computeFS</filesystemname>

</fork>

Figure 13: An example of a simple
compute resource that executes via a
fork

Task 21: Add a new sftp file system
that refers to the local portal
computer in the initalise of your
Rapid XML file. Name this file
system computeFS.

Task 22: Add a fork execution engine

When we submit a compute job via a portlet it needs to know
which resource to submit to as Rapid allows the definition of mul-
tiple execution engines. To specify which execution engine to use,
we use a submitto element as shown in Figure . In order for a

<initialise>

...

<submitto>computeFS</submitto>

...

</initialise>

Figure 14: An example of setting the
compute resource

portlet to actually submit a compute job a user has to press a but-
ton in their browser. In Rapid, this translates to adding a button



a basic tutorial for rapid 8

that contains the <submit/> tag as shown in Figure .

<button display="submit">

<navigate nextpage="pageone"/>

<submit/>

</button>

Figure 15: An example of a submit
button that also changes the portlet
interface the next page

Task 23: Set the fork execution engine
to the execution engine to submit
jobs to.

Task 24: Add a new button or edit an
existing one to allow the user to
submit a job.

Job monitoring

When a compute job is submitted we want to be able to monitor it
and check its results. However, as soon as the job was submitted all
its corresponding variables were reset to the portlet’s initial values.
Two elements exist that enable us to retrieve the settings of the
variables at the time when the job was submitted: <joblist> and
<setjob>. The element <joblist> iterates through each job. Within
this element the values of previously submitted jobs are retrieved
and can be displayed. Additionally, the following useful tags are
defined.

• <status/> displays the current status of the job (suspended,
running, completed, error)

• <date/> displays the date the job was submitted at

• <jobid/> is an identifier that Rapid generates to uniquely iden-
tify each job submitted

• <selection name="selectionname"/> displays a radiobutton
that allows the user to select a job. Used in conjunction with
<setjob>

<page name="...">

<x:h1>Select a job</x:h1>

<x:br/>

<joblist>

<selection name="myselection"/>

<jobid/>

<status/>

<x:br/>

</joblist>

</page>

Figure 16: Basic definition of a com-
pute job monitoring page with a
selection mechanism

The element <selection> is used to allow a user to select a
job which he or she wants to have a closer look at. It displays a ra-
diobutton the user can click. The selected job can later be retrieved
using the <setjob> element.

In this section we display the contents of the output file we gen-
erated using the word count command. The simplest way to accom-
plish this using XHTML is by using an iframe.



a basic tutorial for rapid 9

<page name="...">

<x:h1>Results</x:h1>

<x:br/>

<setjob selection="myselection">

File: $(filenameVar)

<x:br/>

<x:iframe src ="http://my.httpd.ac.uk/outputfile-$(uuidVar)" width="40%" height="50"/>

<x:br/>

</setjob>

</page>

Task 25: Add job monitoring to your
portlet

Task 26: Deploy the portlet once more
into LiferayAdding more features

The portlet created so far is very basic. Several features can be
added such as the following.

• Submit to a Condor pool, PBS cluster or Sun Grid Engine.

• Let the user choose from multiple computational resources
where to submit a compute job.

• Add persistence by saving the state of a portlet to a file or a
database.

• Use Jython to dynamically change the user interface

To add these features make use of Rapid’s user manual2; it explains 2

in detail the tags and constructions required to add these features.


	Preparation of the development system
	Configuration files
	Deploying Rapid portlets
	Transferring files
	Example portlet: word count
	Computational resources
	Job monitoring
	Adding more features

